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Abstract 

We present a general approach to prepare metal/aerogel nanocomposites via template 

directed atomic layer deposition (ALD). In particular, we used a Ru ALD process 

consisting of alternating exposures to bis(cyclopentadienyl)ruthenium (RuCp2) and air at 

350 oC  to deposit metallic Ru nanoparticles on the internal surfaces of carbon and silica 

aerogels. The process does not affect the morphology of the aerogel template and offers 

excellent control over metal loading by simply adjusting the number of ALD cycles. We 

also discuss the limitations of our ALD approach, and suggest ways to overcome these.  
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1. Introduction 

Nanoporous metals exhibit a combination of unique physical and chemical properties 

linked to the very high surface-to-volume ratio of these materials, and as such, have 

significant technological potential as sensors [1,2], actuators [3,4], catalysts [5], and 

electrodes [6]. However, the traditional method to prepare nanoporous metals by alloy 

corrosion[7-9] is limited by the number of suitable alloy systems available. On the other 

hand, it has been demonstrated that nanoporous materials with tailored functionality can 

be developed using aerogels as a flexible and robust material platform [10-16]. 

Furthermore, metal-loading of aerogels should allow one to fine-tune material properties 

by exploiting the size-effect frequently observed for metal nanoparticles [17,18].  The 

techniques which have been developed to synthesize metal-loaded aerogels can be 

divided into two groups based on whether the metal is added before or after the sol-gel 

process. However both approaches have severe limitations: the former interferes with the 

sol-gel process and the latter involves time intensive and/or complicated steps such as 

supercritical deposition of metal nanoparticles. On the other hand, macro-cellular open-

cell polymer foams can be easily loaded with metals using chemical or physical vapor 

deposition [19]. Unfortunately, this simple technique is difficult to scale down as 

shadowing effects and diffusion limitations become more and more important at the 

submicron length scale. 

 

 Here, we take advantage of the self-limiting nature of atomic layer deposition 

(ALD) to overcome the above mentioned limitations. The ALD process utilizes a suitable 

pair of sequential, self-limiting surface reactions and therefore offers excellent atomic 
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level control of the deposited film thickness [20-22]. The method directly produces 

metallic deposits and generates only volatile co-products and therefore eliminates the 

necessity to perform additional reduction and cleaning steps which are usually required 

for wet impregnation techniques. We recently demonstrated that ALD can be used to 

prepare uniform, millimeter-sized samples of  tungsten-coated alumina and GeO2 

aerogels [23]. However, the deposited W nanoparticles/films were not stabile and 

oxidized upon exposure to air. In the present work, we use a noble metal ALD process to 

prepare stable metal/aerogel nanocomposites.  Specifically, we selected Ru as a reliable 

ALD process that has been established in the literature [24,25]. To study the effect of 

aerogel morphology and composition, we use two different aerogel templates: a high 

density carbon aerogel (520 mg/cc) with pores and ligaments on the micrometer length 

scale and a low-density silica aerogel (~10 mg/cc) with pores and ligaments on the 

nanometer length scale. In particular the ruthenium/carbon aerogel nanocomposite is 

technologically relevant as carbon-supported Ru nanoparticles are very efficient catalysts 

in a variety of reactions including the industrially important ammonia synthesis [26-28].   

 

2. Experiment 

The aerogels were synthesized at the Lawrence Livermore National Laboratory, and 

details of the synthesis can be found in Ref. [29,30]. The ALD experiments were 

performed at the University of Helsinki in a flow-type reactor, and the Ru ALD process 

was preciously described in the literature [24,25]. Nominally 8 nm thick Ru films were 

deposited by 200 cycles of alternating exposures to bis(cyclopentadienyl)ruthenium 

(RuCp2) and air at 350 oC. To ensure penetration of the ALD precursors as deep into the 
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aerogel samples as possible, long pulse times of 12 s were applied for both precursors, 

and also the purge times (12 s) were much longer than those used on planar surfaces. In 

order to facilitate the nucleation of Ru, the aerogels were first coated with a thin layer of 

alumina by 10 cycles of alternating exposures to trimethyl aluminum (AlMe3) and water 

at 350 oC with 6 s pulse and purge times. After coating, the aerogel samples were 

fractured, and cross sections were analyzed by means of time-of-flight secondary ion 

mass spectrometry (TOF-SIMS, TRIFT III, Physical Electronics), scanning electron 

microscopy (SEM), high-resolution transmission electron microscopy (HRTEM, Philips 

CM300FEG), and x-ray photoelectron spectroscopy (XPS, Quantum 2000). 

 

3. Results and discussion 

Cross-sectional SEM micrographs reveal that Ru ALD on carbon aerogels results in 

formation of a dense layer of Ru nanoparticles on the surface of the ligaments rather than 

deposition of a continuous film (Fig. 1). This is a typical result for noble metal ALD 

films which are known to suffer from low nucleation density and thus yield individual 

metal nanoparticles rather than continuous films when a low number of cycles are 

applied. In our previous W ALD study we have demonstrated that the nucleation and 

growth mode depends on the particular surface chemistry, and that aerogels can be coated 

with continuous W films which show easier nucleation than noble metals. Ligaments 

fractured after Ru ALD can be easily identified by the absence of Ru nanoparticles on the 

exposed ligament cross-sections. An example is shown in Figure 1b. In this particular 

micrograph one can also see a thin delaminated film supporting Ru nanoparticles 

indicating the formation of a continuous alumina nucleation layer. SEM images collected 
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from different areas of the sample reveal that both the density and the size of Ru particles 

decrease with increasing distance form the original monolith surface.  However, over the 

length scale of the images shown in Fig. 1b,c we observe a relatively narrow size 

distribution. Energy dispersive x-ray (EDX) spectroscopy reveals that the metal loading 

of sample area shown in Fig 1b is ~20 at. %  (~67 wt. %).  Note that the ALD technique 

allows one to control both metal loading and the particle size by simply adjusting the 

number of ALD cycles. For example, in our previous study of W ALD on alumina and 

germania aerogels we achieved weight gains due to metal loading up to several hundred 

percent.[23] Furthermore, the deposition of Ru nanoparticles did not modify the 

morphology of the aerogel. 

 

The Ru nanoparticles were further characterized by HRTEM (Figure 2) and XPS (data 

not shown). HRTEM reveals the formation of dome-shaped crystalline Ru nanoparticles, 

and XPS demonstrates that the Ru nanoparticles are metallic and stabile in air (Ru3d5/2 

XPS peak at 280 eV using the Al 2p peak of Al2O3 at 74.7 eV as reference). In contrast, 

traditional techniques for metal loading of aerogels usually require an additional 

reduction step to obtain metallic nanoparticles.   

 

The Ru gradient revealed by cross-sectional SEM was further studied by TOF-SIMS 

(Figure 3). Images collected from fracture surfaces (fractured after Ru ALD) reveal that 

the Ru concentration is non-uniform and decreases with increasing distance from the 

aerogel surface. The Ru concentration decreases below the detection limit of our TOF-

SIMIS system at a distance of approximately 300 micron from the top surface. Unlike 
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Ru, aluminum from the alumina nucleation layer is homogeneously distributed 

throughout the sample as demonstrated by the concentration profiles shown in Figure 3. 

This difference is attributed to the lower vapor pressure of the RuCp2 precursor and 

indicates that the Ru ALD process remained in the diffusion-limited regime.  

 

The Ru concentration gradient observed in the carbon aerogel sample (Fig. 3) clearly 

reveals the limitations of the technique. Uniform coating of macroscopic aerogel samples 

requires either the use of a sufficiently volatile metal precursor or very long exposure 

times. The first requirement is currently difficult to meet because there is only a limited 

number of suitable precursor pairs for metal ALD known [31,32], and among those WF6 

is the only high volatility metal precursor. The possibility to scale up the method by 

increasing the exposure time is also limited as the necessary exposure required to obtain 

uniform coatings scales with the square of the aspect ratio [33]. Further increase in 

exposure times would lead not only to increased process times but also increasing waste 

of the relatively expensive RuCp2 precursor. In the reactor configuration used here, as 

well as in all conventional ALD reactors, the precursors are transported along the surface 

of the substrate and to saturate the surfaces inside the porous substrate the precursor 

molecules need to be transported by diffusion from the main flow into the pores. At the 

same time a major part of the molecules still flows over the substrate without being used. 

This brief discussion clearly demonstrates the need to develop new metal precursors with 

higher vapor pressures. An alternative solution may be found from reactor technology, 

however. Recently a new reactor configuration has been introduced [34] where the 

precursors molecules are forced to flow through the porous monolith, rather than flowing 
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over it. This increases both the precursor utilization and the speed with which the surface 

inside the porous substrate can be saturated. A solid source for this reactor is still under 

development, however, and thus Ru coating of aerogels with this reactor will remain a 

topic of the next study. 

 

To study the influence of the length-scale of aerogel templates, we performed additional 

ALD experiments on low-density silica aerogels with pores and ligaments on the length 

scale of a few nanometers. Already the visual inspection of the processed aerogel reveals 

the inhomogeneity of Ru coating (at least on a millimeter length scale) as judged by the 

presence of both transparent (original silica aerogel) and opaque (Ru rich) regions. 

Opaque regions were further analyzed by TOF-SIMS, SEM, and HRTEM (Fig. 4). TOF-

SIMS reveals that Ru and Al are relatively evenly distributed throughout the opaque 

regions, at least on the length scale accessible by this technique (a few hundred 

micrometers). SEM micrographs do only show very faint Ru related features (spherical 

nanoparticles similar to those observed by TEM), although energy dispersive x-ray 

spectroscopy reveals the presence of ~50 at. % Ru (~80 wt. %). HRTEM confirms the 

formation of roughly spherical Ru nanoparticles with a diameter of ~ 5 nm (Fig. 4c). XPS 

reveals that these Ru particles are metallic and stable in air as in the case of the carbon 

aerogel. The large-scale inhomogeneity of the sample could be related to the presence of 

micro-cracks which facilitate rapid diffusion of the ALD precursor into certain regions of 

the sample. 
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4. Conclusions 

The metal ALD/ aerogel template approach described here offers the unique opportunity 

to synthesize tunable metal/aerogel hybrid materials. At the current stage, the technique is 

limited to thin samples due to the need to transport the precursor molecules into the pores 

by diffusion from the main gas flow. For enhancing the precursor transportation into the 

pores the recently introduced flow-through reactor configuration may turn out very 

useful. Further enhancement may also be sought from high volatility metal precursors. 

Nevertheless, the technique is very promising for thin film applications such as the 

development of highly efficient electrodes for fuel cells.    
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Figure Caption: 

 

Figure 1 SEM micrographs of the fracture surface of a Ru-coated aerogel at different 

magnification levels (a-c). Note the uniform coating of the carbon ligaments 

with Ru nanoparticles. Fractured (after Ru ALD) ligaments can be identified 

by the absence of Ru particles on the exposed ligament cross-sections (b).  

 

Figure 2: HRTEM image of Ru nanoparticles grown via ALD on a carbon aerogel.  

 

Figure 3 TOF-SIMS analysis of a fracture surface of a Ru-coated carbon aerogel: 

optical image (top right) as well as the corresponding TOF-SIMS images (left) 

collected in the Ru and Al channels. Two-dimensional Ru and Al 

concentration profiles (collected along the white line) are shown in the lower 

right corner.  

 

Figure 4: Characterization of Ru coated silica aerogels: Ru and Al channel TOF-SIMS 

images (a) as well as a SEM micrograph (b) collected from fractured samples. 

HRTEM micrograph revealing the growth of embedded Ru nanoparticles (c). 
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Figure 1 SEM micrographs of the fracture surface of a Ru-coated aerogel at different 

magnification levels (a-c). Note the uniform coating of the carbon ligaments 

with Ru nanoparticles. Fractured (after Ru ALD) ligaments can be identified 

by the absence of Ru particles on the exposed ligament cross-sections (b).  
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Figure 2: HRTEM image of Ru nanoparticles grown via ALD on a carbon aerogel.  
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Figure 3: TOF-SIMS analysis of a fracture surface of a Ru-coated carbon aerogel: 

optical image (top right) as well as the corresponding TOF-SIMS images (left) 

collected in the Ru and Al channels. Two-dimensional Ru and Al 

concentration profiles (collected along the white line) are shown in the lower 

right corner.  
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Figure 4: Characterization of Ru coated silica aerogels: Ru and Al channel TOF-SIMS 

images (a) as well as a SEM micrograph (b) collected from fractured samples. 

HRTEM micrograph revealing the growth of embedded Ru nanoparticles (c). 

 




